Structure preserving eigenvalue embedding for undamped gyroscopic systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical method for quadratic eigenvalue problems of gyroscopic systems

We consider the quadratic eigenvalues problem (QEP) of gyroscopic systems ðlMþ lGþ KÞx 1⁄4 0, where M 1⁄4 M>;G 1⁄4 G> and K 1⁄4 K> 2 R n with M being positive definite. Guo [Numerical solution of a quadratic eigenvalue problem, Linear Algebra and its Applications 385 (2004) 391–406] showed that all eigenvalues of the QEP can be found by solving the maximal solution of a nonlinear matrix equatio...

متن کامل

An Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems

The inverse eigenvalue problem of constructing symmetric positive semidefinite matrixD written as D ≥ 0 and real-valued skew-symmetric matrix G i.e., G −G of order n for the quadratic pencilQ λ : λMa λ D G Ka, whereMa > 0,Ka ≥ 0 are given analytical mass and stiffness matrices, so that Q λ has a prescribed subset of eigenvalues and eigenvectors, is considered. Necessary and sufficient condition...

متن کامل

Visualizing Graphs with Structure Preserving Embedding

Structure Preserving Embedding (SPE) is a method for embedding graphs in lowdimensional Euclidean space such that the embedding preserves the graph’s global topological properties. Specifically, topology is preserved if a connectivity algorithm can recover the original graph from only the coordinates of its nodes after embedding. Given an input graph and an algorithm for linking embedded nodes,...

متن کامل

A structure-preserving doubling algorithm for quadratic eigenvalue problems arising from time-delay systems

We propose a structure-preserving doubling algorithm for a quadratic eigenvalue problem arising from the stability analysis of time-delay systems. We are particularly interested in the eigenvalues on the unit circle, which are difficult to compute. The convergence and backward error of the algorithm are analyzed and three numerical examples are presented. Our experience shows that the algorithm...

متن کامل

Strongly stable gyroscopic systems

Here, gyroscopic systems are time-invariant systems for which motions can be characterized by properties of a matrix pencil L(λ) = λ2I + λG − C, where GT = −G and C > 0. A strong stability condition is known which depends only on |G| (= (GT G)1/2 ≥ 0) and C. If a system with coefficients G0 and C satisfies this condition then all systems with the same C and with a G satisfying |G| ≥ |G0| are al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 2014

ISSN: 0307-904X

DOI: 10.1016/j.apm.2014.02.016